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Abstract 
This paper proposes a novel technique for clustering and 
classification of object trajectory-based video motion clips using 
spatiotemporal function approximations. Assuming the clusters of 
trajectory points are distributed normally in the coefficient feature 
space, we propose a Mahalanobis classifier for the detection of 
anomalous trajectories. Motion trajectories are considered as time 
series and modeled using orthogonal basis function 
representations. We have compared three different function 
approximations – least squares polynomials, Chebyshev 
polynomials and Fourier series obtained by Discrete Fourier 
Transform (DFT). Trajectory clustering is then carried out in the 
chosen coefficient feature space to discover patterns of similar 
object motions. The coefficients of the basis functions are used as 
input feature vectors to a Self-Organising Map which can learn 
similarities between object trajectories in an unsupervised 
manner. Encoding trajectories in this way leads to efficiency 
gains over existing approaches that use discrete point-based flow 
vectors to represent the whole trajectory. Our proposed techniques 
are validated on three different datasets - Australian sign 
language, hand-labelled object trajectories from video 
surveillance footage and real-time tracking data obtained in the 
laboratory. Applications to event detection and motion data 
mining for multimedia video surveillance systems are envisaged. 

Keywords 
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1. Introduction 
The current ubiquity of video surveillance systems has prompted 
a flurry of research activity aimed at the development of 
sophisticated content-based video data management techniques. 
General purpose tools are now urgently required for video event 
mining including discovery and grouping of similar motion 
patterns, detection of anomalous behaviour and object motion 
prediction. These techniques are essential for the development of 
next generation 'actionable intelligence' surveillance systems. 
Much of the earlier research focus has been on high-level object 
trajectory representation schemes that are able to produce 
compressed forms of motion data [1, 3, 4, 10, 13, 16, 22, 23, 29, 
34, 35]. This work presupposes the existence of some low-level 

visual tracking scheme for reliably extracting object-based 
trajectories [17, 36]. The literature on trajectory-based motion 
understanding and pattern discovery is less mature but advances 
using Learning Vector Quantization (LVQ) [24], Self-Organising 
Maps (SOMs) [18, 32], hidden Markov Models (HMMs) [5, 6], 
and fuzzy neural networks [19] have all been reported. Most of 
these techniques attempt to learn high-level motion behaviour 
patterns from sample trajectories using discrete point-based flow 
vectors as input to a machine learning algorithm. For realistic 
motion sequences, convergence of these techniques is slow and 
the learning phase is usually carried out offline due to the high 
dimensionality of the input data space. 
Related work within the data mining community on 
approximation schemes for indexing time series data is highly 
relevant to the parameterisation of object trajectories. However, 
computer vision researchers have been slow to realize the 
potential of this work. For example, Discrete Fourier Transforms 
(DFT) [14], Discrete Wavelet Transforms (DWT) [9], Adaptive 
Piecewise Constant Approximations (APCA) [27], and 
Chebyshev polynomials [12] have been used to conduct similarity 
search in time series data. 
In this paper, we apply time series modeling of spatiotemporal 
data to the problem of object trajectory classification and show 
how to learn motion patterns by projecting the high-dimensional 
trajectory data into a low-dimensional manifold represented by a 
suitably chosen coefficient feature space. The coefficients are 
derived using functional approximation. The vector of basis 
function coefficients is used as an input feature vector to a neural 
network learning algorithm – in this instance a SOM - which can 
learn similarities between object trajectories in an unsupervised 
manner. It is shown that significant improvements in the accuracy 
of trajectory classification and recognition result when learning 
takes place in the coefficient feature space rather than in the 
original high-dimensional point trajectory space. 
The remainder of the paper is organized as follow. We review 
some relevant background material in section 2. In section 3 we 
present some function approximation approaches to trajectory 
representation. The system architecture and trajectory learning 
algorithm is presented in section 4 within the framework of a self-
organising map. In section 5, the trajectory classification and 
anomaly detection procedure is discussed and experimental 
results for different examples of object tracking data are reported 



in section 6. The paper concludes with a discussion and proposals 
for further work. 

2. Background and related work 
Trajectory descriptors as proposed in MPEG-7 [22] are known to 
be useful candidates for compressed representation of video 
object motion. Previous work has sought to represent moving 
object trajectories through a wide variety of direction and 
topological based schemes, symbolic representations, polynomial 
models and other function approximations [1, 3, 4, 9, 10, 12, 13, 
14, 16, 22, 23, 27, 34, 35]. The importance of selecting the most 
appropriate trajectory model has received relatively scant 
attention [29]. In the recent literature, the most promising 
similarity retrieval approach for motion trajectories is based on 
symbolic approximation and string matching [11, 15]. However, 
this approach appears to be less suited to trajectory clustering and 
classification than other techniques based on one-dimensional 
time series. Edit distance similarity measures [15] and MINDIST 
search [11] commonly used in string matching incur quadratic 
programming costs which make the symbolic approach less 
attractive when object motion-based video retrieval is not the 
prime motivation. 
It is surprising to find that many of these candidate indexing 
schemes have not yet been applied to the problem of motion data 
mining and trajectory classification. Recent work has either used 
probabilistic models such as HMMs [2, 5, 6] or discrete point-
based trajectory flow vectors [18, 19, 24] as a means of learning 
patterns of motion activity. An agglomerative clustering 
algorithm based on the Longest Common Subsequence (LCSS) 
approach for grouping similar motion trajectories has been 
proposed in [7, 37]. Yacoob [38] and Bashir et al. [5, 6] have 
presented a framework for modeling and recognition of human 
motion based on a trajectory segmentation scheme. Classification 
is performed using Gaussian Mixture Model (GMMs) and HMMs 
with trajectory modeling that relies on a PCA-based 
representation of segmented object trajectories. In [33], a 
semantic event detection technique based on discrete HMMs is 
applied to snooker videos. Various machine learning algorithms 
used for classifying biological motion trajectories are compared in 
[20]. 
The contribution of this paper is to show that a trajectory-
encoding scheme using a coefficient feature space can be used to 
learn motion patterns more efficiently than previous approaches 
relying on discrete point-based flow vectors. Clustering, 
classification and the detection of anomalous trajectories can then 
be carried out in the coefficient feature space with reduced 
computational burden.  

3. Trajectory representation using function 
approximation 
The output of a motion tracking algorithm is usually a set of noisy 
2-D tracker points (xi, yi) representing the object’s motion path 
over a sequence of n frames, where i = 0,…, n-1. Often the 
representative point is taken to be the centroid or edge midpoint 
of the object’s minimum bounding rectangle. The motion 
trajectory can be considered as two separate 1-dimensional time 
series, <ti, xi> and <ti, yi>, the horizontal and vertical 
displacement against time where t0 < … < tn-1. We consider three 
alternative trajectory models: Least Squares polynomials (LS), 

Chebyshev polynomials (CS) and DFT-derived Fourier series 
(FS) approximation.  
LS polynomials are suitable for modelling simple motion trails in 
the spatial domain, e.g. vehicles moving uniformly along 
highways, or for smoothing x-y projections of more complex 
spatio-temporal trajectories. Chebyshev approximations are more 
appropriate for modelling highly complex spatiotemporal 
trajectories such as pedestrian motion exhibiting stop-start and 
looping motions, whilst Fourier series approximation are suitable 
for mixed types of trajectory. Occasionally, it may be possible to 
approximate the motion trail (spatial trajectory shape only) in the 
x-y plane. In this case, we would replace t by x or y  in one of the 
following equations depending on the choice of principal axis 
[16]. This would only be worthwhile if all trajectories could be 
aligned with the same principal axis. An example would be the 
modelling of vehicle trajectories in highway traffic surveillance. 
However, spatial modelling neglects the temporal component 
inherent in motion trajectories. 
In applications to fixed-camera surveillance, it is not necessary to 
apply shift and scale transformations to the data before model 
fitting. We wish to preserve shift and scale dependence at the 
clustering stage. The performance of the three different trajectory 
representation schemes is compared experimentally in section 6. 

3.1 Least squares polynomials 
The trajectory projected in the (x, t) space can be modelled by a 
polynomial Pm(x)(t) of degree m < n as 

 m
xmxxxm tataatPx )()(1)(0)( )( +++=≈ K   

(1) 
The projection of the trajectory in the (y, t) space can be modelled 
using a similar polynomial expression, y ≈ Pm(y)(t). The unknown 
2(m+1) coefficients ai(x), ai(y) (i = 0,..., m) can be determined  
using a least squares approximation by minimising the function E 
with respect to a0, a1, ... using trajectory points (xi, ti) and (yi, ti) 
for ai(x) and ai(y) respectively. The function for ai(x)  is given as: 

2
)(

1

0
)(1)(0)()(1)(0 )}({),,,( m

ixm

n

i
ixxixmxx tataaxaaaE +++−=∑

−

=

KK
  

(2) 
The motion trajectories are therefore modelled by a feature vector 
of LS polynomial coefficients A = {a0(x),..., am(x), a0(y),..., am(y)}. 

3.2 Chebyshev polynomials 
Alternatively, a spatiotemporal trajectory (ti, xi) can be modelled 
by a function f(x)(t) expressed as a weighted sum of Chebyshev 
polynomials Ck(x)(t) up to degree m, defined as 
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for t ∈ [-1,1] and i = 1,..., m. The k roots of Ck(x) (t) are given by tj 
for 1 ≤ j ≤ k. Similar expressions can be obtained for projection in 
(y, t) trajectory space. Thus, the motion trajectories are 
represented by a feature vector of Chebyshev polynomial 



coefficients B = {b0(x),..., bm(x), b0(y),..., bm(y)}. Further 
implementation details can be found in [12]. 

3.3 Discrete Fourier transform 
Without loss of generality, a spatiotemporal trajectory (ti, xi), i = 
0,…, n-1 can be considered as a 1-D time series {xi} if ti = i.  The 
n-point DFT of {xi} is defined to be a sequence {Xf} of n complex 
numbers,  f = 0,..., n-1 given in eq.(5). A similar expression can be 
defined for {yi} given in eq.(6). 
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where j = √-1. Typically, the DFT sequence is truncated after m 
terms,  f = 0,.., m−1, where X0 and Y0 are real numbers. In this 
case, the motion trajectory feature vector consists of 2m+2 entries 
(from real and imaginary parts) for each time series in {xi} and 
{yi}. 

3.4 Similarity search metric 
The Euclidean distance in the feature vector space is used as the 
basis for comparing the similarity of two motion trajectories. 
Each function approximation produces a coefficient feature vector 
which can be used to index a 2-D trajectory. Given two 
trajectories Q and S, we can index these by a concatenated feature 
vector of coefficients qj and sj (j = 0, 2m+1) of dimension 2m+2, 
i.e. Q = {q0,..., q2m+1}, S = {s0,..., s2m+1}. The overall trajectory 
feature vector is formed by concatenating the separate xi, yi time 
series coefficient feature vectors. A Euclidean distance (ED) on 
the coefficient feature space can be expressed as: 

∑
+

=

−=
)12(

0

2)(),(
m

j
jj sqSQED  

 
(7) 

 
4. Learning trajectory patterns using Self-
Organising Maps 
Self-organising maps (SOMs) have been previously used for 
motion activity classification [18, 32] with trajectories encoded as 
point-based flow vectors. However, the use of point-based 
encoded trajectories results in a high dimensional learning space 
and reduced system efficiency. In this case, unsupervised learning 
of motion patterns normally takes place offline. To achieve 
dimensionality reduction, we consider object trajectories as 
motion time series and index using a low-dimensional coefficient 
feature space. An overview of the system architecture used for 
trajectory learning is shown in Fig. 1. 

4.1 Network model 
The network topology chosen for the SOM is a layer of input 
neurons connected directly to a single 1-dimensional output layer. 
Each input neuron is connected to every output neuron with the 
connection represented by a weight vector. The network topology 
is shown in Fig. 2. A similar network model was proposed in [18] 
to learn vehicle trajectories for accident prediction. 
In a SOM network, physically adjacent output nodes encode 
patterns in the trajectory data that are similar and hence, it is 
known as a topology-preserving map. Consequently, similar 

object trajectories are mapped to the same output neuron. The 
number of input neurons is determined by the size of the feature 
vector which relates to the selected number of coefficients in the 
model. 
 

 
Figure 1. Overview of system architecture for learning object 
trajectories. 

 

Figure 2. SOM network architecture used for trajectory 
learning. 

4.2 Learning Algorithm 
The algorithm used to cluster the trajectories differs slightly from 
the original SOM proposed by Kohonen [30]. The number of 
output neurons representing the number of distinct patterns in the 
data is initially set to a value greater than the desired number of 
cluster patterns that we wish to produce. After training the 
network, clusters representing the most similar patterns are 
merged in an agglomerative manner until the cluster count is 
reduced to the target number. The final number of trajectory 
cluster patterns is empirically chosen at present.  
Let B be the input feature vector representing the set of trajectory 
basis function coefficients, and W the weight vector associated to 
each output neuron. The learning algorithm comprises the 
following steps: 
1. Determine the winning output node k (indexed by c) such that 

the Euclidean distance between the current input vector B and 
the weight vector Wk is a minimum amongst all output 
neurons, given by the condition 
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2. Train the network by updating the weights. A subset of the 
weights constituting a neighbourhood centred around node c 

are updated using  
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where η(k, c) = exp(−|rk−rc|2 / 2σt
2) is a neighbourhood 

function that has a value of 1 when k = c and falls off with 
distance |rk − rc| between output nodes k and c, σt  is a width 
parameter that is gradually decreased and t is the training cycle 
index. 

3. Decrease the learning rate α(t) linearly over time. 

4. After a pre-determined number of training cycles, decrease the 
neighbourhood size. 

5. At the end of the training phase, merge the most similar cluster 
pairs until the desired number of groupings is achieved. 
Assuming Wa and Wb are the weight vectors associated with 
output neurons representing the most similar clusters, and m, n 
are the number of sample trajectories mapped to these neurons 
respectively, a new weight value Wab for the merged cluster 
can be calculated as 
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5. Trajectory classification and anomaly 
detection 
The SOM algorithm can be used to learn a set of motion patterns 
for the trajectory training dataset. The resulting labelled classes 
can then be used to classify new unseen trajectory data as normal 
(i.e. belonging to one of the existing labelled classes) or abnormal 
(sufficiently distant from one of the existing classes). We use a 
simple k-NN classifier with the optimum value of k chosen by 
leave-one-out analysis. This involves training the classifier on all 
the labelled trajectories apart from the single trajectory to be 
tested. The step is then repeated over all trajectories in the dataset 
and the mean classification accuracy determined. We select the 
value of k that achieves the best classification result.  
Classification results are presented in the following section using 
hand-labelled trajectories as ground truth. Visualisation of the 
clusters in the coefficient feature space shows that it is a 
reasonable assumption to represent class conditional probability 
density functions as multivariate normal. Anomalous trajectories 
can be detected through analysis of the covariance structure of a 
pattern at each output node. Hotelling’s T2 test is used to 
determine if the Mahalanobis distance of a sample trajectory to its 
nearest class centre makes it an outlier and thus abnormal. The 
test is now described in more detail. 
Assume that instance feature vector x belongs to pattern class Γi , 
where #{Γi} denotes the number of sample vectors x assigned to 
class Γi and i = 1,…,K. The class mean is denoted by µi and the 
covariance estimate ∑i is given by 
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where µi and ∑i are calculated during training. The T2 statistic 
based on the Mahalanobis distance can be calculated as 
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where n = #{Γi} and µi is the class mean to which the sample 
vector is closest. A hypothesis test [25] can be conducted to 
determine whether x is ‘too far’ from µi and hence denoted as 
anomalous. Given an input feature vector of dimension p in the 
coefficient space, we have that  
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where Fp,n-p is a random variable with an F-distribution and p, n-p 
degrees of freedom. Fp,n-p(α) is the upper (100α) th percentile of 
the Fp,n-p distribution.  

6. Experimental results 
We now present some results to demonstrate the effectiveness of 
the proposed clustering, classification and anomaly detection 
techniques in the coefficient feature space. The experiments have 
been performed on three different tracking datasets – hand-
labelled object trajectories taken from the CAVIAR dataset [8], 
real-time object tracking data recorded in our laboratory, and high 
quality recordings of hand signs taken from the Australian Sign 
Language (ASL) UCI KDD archive [26]. The latter dataset 
(although not taken from a surveillance scenario) is included to 
permit comparison with previously reported motion classification 
techniques. 

6.1 Peformance evaluation of trajectory 
modelling schemes 
The performance of the three different trajectory representation 
schemes has been compared. The purpose of the experiment was 
to test the retrieval accuracy for each approximation scheme and 
to investigate the effect of varying the number of coefficients 
used for model fitting. We also wished to examine the effect of 
introducing additive noise and simulating object occlusion on 
retrieval performance. 
Experiments have been performed using the CAVIAR dataset 
which consists of hand-labelled video sequences of moving and 
stationary people. This was originally established to provide a 
testbed for benchmarking vision understanding algorithms. 
Semantic descriptions of target object behaviours and motion 
coordinates had been previously generated using a interactive 
labelling program and the results have been stored in XML files 
[8]. These files have been parsed to extract ground truth labelled 
object trajectories.  
The dataset, S, contains 222 individual object trajectories 
extracted from 22 different video sequences as shown in Fig. 3. A 
corrupted dataset SC is produced by adding the term 
η*U[0,1]*rangeValues to each (x, y) coordinate in the original set 
S, where η is a scaling factor such that 0 ≤ η ≤ 1, U[0,1] is 
uniform random noise on the interval [0,1], and rangeValues is 
the range on x and y coordinates. Each corrupted trajectory in SC 
then serves as an example query QC and we search for its closest 
match Q in the original dataset S  by searching for 
argminQ∈S{ED(QC, Q)}. A set of rankings ∀QC ∈ SC is produced. 
In the absence of noise and when no data points are excluded, the 
closest match to QC should be its corresponding uncorrupted 
version in S which produces a rank value of 1. For ease of 



comparison we record the proportion of times (as a percentage) 
the query trajectory is ranked correctly as 1 when taken over all 
SC. This is repeated for different number of coefficients in LS, 
Chebyshev and Fourier approximations and for various values of 
scale factor η. The results are summarised in Fig. 4. 

 
Figure 3. Background scene containing ground truth labelled 
object trajectories extracted from the CAVIAR dataset [8]. 
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Figure 4. Effect of scaled uniform noise on trajectory retrieval 
accuracy. w is the scaling factor, LS= least squares, CS = 
Chebyshev polynomials, and FS = Fourier series 
approximation using DFT. 

For small amounts of noise, both the choice of approximation 
scheme and number of coefficients does not appear to be too 
critical, although there is a slightly higher fall off in performance 
for LS as m increases. For higher noise levels, it is apparent that 
Fourier series approximations outperform both LS and Chebyshev 
polynomials. This may be explained by the fact that Euclidean 
distance defined over Fourier coefficients is more noise resistant 
in the frequency domain. In previous work, it has been shown that 
a LS-RANSAC approach would be beneficial if it is known that 
the tracking algorithm produces very noisy estimates with a 
significant number of outliers [29]. 

The retrieval experiment was then repeated but this time under 
simulated object occlusion by removing at random a continuous 
subsequence of points. This experiment determine the effect of 
having partial or abruptly interrupted trajectories on the choice of 
representation scheme. The proportion of points removed (p) 
varied between 10, 20 and 30% of the trajectories’ length. Each of 
the results obtained were averaged over 10 random subsequence 
removals. In this instance there was no added noise. The 
percentage retrieval accuracy over all query trajectories was 
determined as before for each choice of approximation scheme 
and number of coefficients. The results are shown in Fig. 5. In 
this case LS polynomials perform best in presence of partial or 
abruptly occluded trajectories. This can be explained by the larger 
smoothing effects of LS operator compared to Chebyshev or 
Fourier series approximations. 
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Figure 5. Effect of occluding subsequences on trajectory 
retrieval accuracy. p is the percentage of subsequence length 
removed from the original trajectory. Results are averaged 
over 10 random removals. LS= least squares, CS = Chebyshev 
polynomials, and FS = Fourier series approximation. 

6.2 Comparison of trajectory clustering 
techniques 
The ED-metric defined over the coefficient feature space is now 
used to perform the trajectory clustering step. We ran the SOM 
clustering algorithm on the previous dataset using the 3 different 
spatiotemporal approximations. From empirical observation, it 
was noticed that if the number of coefficients is too low (typically 
m < 3), poor clustering results are obtained. As a sanity check, we 
repeated the clustering using a standard K-Means algorithm [21] 
and the same result was observed. Although satisfactory results 
are obtained in retrieval experiments with a small number of 
coefficients, there is insufficient discriminatory power in a very 
low dimensional coefficient subspace to achieve a meaningful 
clustering outcome. This was an unexpected result that warrants 
further investigation. 
In practice, we have found no discernible differences in SOM 
clustering results between spatiotemporal trajectory models 
generated by Chebyshev polynomials with m = 4, 6 and 8 



coefficients and DFT approximation with m = 4 and 6 terms. The 
SOM algorithm always produces visually better cluster 
separations than K-means. This is to be expected given that SOM 
is better at preserving the topology of the original trajectory 
space. We do not attempt to first normalise trajectories to achieve 
scale or translational invariance since we wish to preserve these 
differences in the clustering stage. Preserving scale and 
translation dependence is a desired outcome in fixed camera 
surveillance applications. 
The individual object trajectories have widely varying lengths 
ranging from 20-1600 points with a mean length of 342. The 
trajectory points are rectified to the ground plane using the 
homography mapping data provided [8]. We have indexed the 
object trajectories using 9 DFT coefficient feature vectors for 
each spatial coordinate (m = 4). We initially train a SOM network 
with 50 output neurons and then reduce these to 9 using the 
agglomerative clustering method described in section 4.2. The 
final choice for the number of clusters in the dataset is empirically 
determined. However, this process can be automated by applying 
a threshold on the distance between the closest clusters when 
merging the most similar clusters together. The merging process 
is stopped when the distance between the closest clusters lies 
below a certain threshold value. 

In the SOM learning algorithm the neighbourhood size σt is 
decreased linearly after every Q training cycles, where Q is fixed 
at the start of training. The learning rate α(t) is reduced linearly 
over time until it reaches a preset minimum value and then 
remains constant over the fine tuning stage until the maximum 
number of iterations is achieved. The weight vectors are randomly 
initialized to lie within the expected range of the input feature 
vectors. This type of initialization improves the stability of the 
training network during the learning phase. 
Sample trajectories from the test set are then classified using the 
classification technique described in section 5. The resulting 
trajectory cluster patterns are shown in Fig. 6. Visual inspection 
confirms that qualitatively similar motion trajectories have been 
clustered together quite successfully. Motions across the shopping 
mall corridor from left-to-right and right-to-left are grouped into 
separate clusters as expected. Although the proposed time series 
representation is velocity dependent, spatial similarities in object 
trajectories can still be identified in the cluster patterns. In this 
case we have chosen a motion representation that is view 
dependent and this would necessitate training the system on each 
camera separately. A method that deals with small PTZ motions 
of the camera can be developed based on techniques described in 
[4]. 
In order to visualise the effects of trajectory clustering in the 
transformed feature space, we perform Principal Component 
Analysis (PCA) on the DFT coefficient vectors. The first 3 PCs 
account for 94% of the total variability. Fig. 7 shows the 
trajectories plotted in the PCA subspace of DFT coefficients. 
Each point represents an instance trajectory and these are given 
different symbols to highlight the separate cluster groups each 
trajectory is allocated to. These plots show a good degree of 
cluster separation in the low-dimensional PCA subspace. 

 

 

 

 

 
Figure 6. Clustering of motion trajectories in CAVIAR 
dataset using SOM with DFT-based coefficient input feature 
vectors. The complete set is shown in Fig. 3. 



 

 

Figure 7. Trajectory clustering in the Fourier coefficient 
subspace (m = 4). For visualisation purposes we have 
performed PCA on the DFT coefficient feature vector and 
produced pairwise plots of PC1 vs PC2 (upper), PC1 vs PC3 
(middle), and PC2 vs PC3 (lower). Error ellipses for the 
covariance matrices are shown for each cluster group. 

We repeated the clustering experiment on a synchronised set of 
frontal views taken from the same dataset. The resulting trajectory 
cluster patterns are shown in Fig. 9 with the complete set of 
trajectories depicted in Fig. 8. Again visual inspection confirms 
that qualitatively similar motion trajectories have been clustered 
together quite successfully. Motion clusters approximately fall 
into one of the following 6 classes – motion left-to-right and 
right-to-left across the corridor, motion into the store from 
left/right direction, and motion out of the store and towards 
left/right direction. 

 

Figure 8. Background scene of synchronized frontal view of 
shopping mall corridor with overlaid set of hand-labelled 
trajectories. 

 

 

 

Figure 9. Motion trajectory cluster patterns in synchronised 
view of Fig. 6 using SOM with DFT coefficient feature 
vectors. 

To investigate the effectiveness of clustering in the coefficient 
feature space compared to clustering with point-based flow 
vectors, we performed some additional classification tests. The 
class labels of the motion patterns shown in Fig. 9 were assigned 
using the SOM unsupervised learning algorithm described in 
section 4. This dataset was chosen as it demonstrates good class 
separation.  



For comparison purposes this was repeated using K-means 
clustering [21]. The assigned labels displayed in Fig. 9 were taken 
to represent ground truth. The dataset, ST, was then randomly 
partitioned into equal-sized training and test sets for cross 
validation purposes. We used a k-NN classifier (k = 1) to classify 
all instance trajectories from the test set and generated the overall 
classification accuracy. To avoid bias, we repeated the random 
partitioning 500 times and averaged the classification errors over 
the test set. The results summarised in Table 1 demonstrate the 
superiority of learning trajectory patterns in the coefficient feature 
space. The classification accuracy obtained using coefficient 
feature space learning is higher than point-based trajectory 
encoding for both SOM and K-means algorithms. 

Table 1. Comparison of mean overall classification accuracy 
for 2 different clustering techniques (SOM and K-means) and 
2 different trajectory encodings (DFT coefficient feature space 
and point-based flow vectors). #classes : #trajectories = 6 : 62 
(# training set = 63, # test set = 62). 

Method type % Accuracy 

SOM: DFT coefficients 93.7 

SOM: point flow vectors 81.2 

K-Means: DFT coefficients 89.7 

K-Means: point flow vectors 83.0 

 
For the next experiment, we compared the performance of all 4 
methods in trajectory classification and prediction. From the 
original set ST, we define a set of partial trajectories SP by 
removing 10% of the data points from the end of each trajectory. 
This is increased up to 50% in steps of 10. The partial trajectories 
are then passed to the learning algorithm for classification. The 
class assigned to the complete trajectory is treated as the ground 
truth when assessing classification accuracy for the partial 
trajectory. We compare the point-based flow vector and DFT 
coefficient feature vector representation for both SOM and K-
means trajectory learning techniques. The classification is based 
on the Mahalanobis distance between the input vector xP 
representing the partial trajectory and cluster mean µi associated 
with ith output neuron/cluster centre. The sample xP is assigned to 
class k if 

)}(){(minarg 1
iPi

T
iPKi xxk µµ −∑−= −

∈   (14) 

where Σi is covariance estimate and is calculated using eq.(11). xP 
is said to be misclassified if it is not assigned to the same class 
when trained on ST. The mean classification errors based on 
motion prediction for the partial trajectories using each of the four 
approaches can be seen in Fig. 10. Once again, the classifier 
derived from an SOM-based learning technique combined with 
trajectory representation in the DFT-coefficient feature space 
outperforms K-means and point-based flow vector encoding as it 
achieves lower misclassification errors. Hence, parameterized 
models prove more effective than point-based flow vectors in the 
trajectory prediction and classification task. 

 

Figure 10. Comparison of mean overall classification accuracy 
in motion activity prediction using 2 different clustering 
techniques (SOM and K-means) and 2 different trajectory 
representations (DFT-coefficient feature space and point-
based flow vectors). #classes : #trajectories = 6:125. 

6.3 Experiments using Australian Sign 
Language data 
Classification experiments have also been performed on the 
Australian Sign Language (ASL) dataset [26]. The trajectories are 
derived from the (x, y) coordinates of the signer's hand over a 
sequence of frames as different word classes are signed. The 
results presented in this section may be compared with those 
reported in [5] for HMM-based motion recognition. Other 
trajectory classification methods have  have also been tested on 
this dataset [2, 4, 6, 11]. Hand sign trajectories for the word class 
forget are shown in Fig. 11. 

 

Figure 11. Three examples of hand sign trajectories for the 
word class forget in the Australian Sign Language (ASL) 
dataset. The vertical axis represents the time. 

Each word class has 27 examples of signs with a trajectory point 
length of 57. A set of 30 word classes has been chosen. We used a 
supervised form of SOM to determine the classification accuracy 
for DFT-coefficient feature space trajectory learning. For the 
required number of word classes, the motion signing data is 
randomly partioned into equal-sized training and test sets. The 
codebook vectors are then learnt using the training data. The 
SOM is initialized with the number of output neurons set equal to 
the number of word classes present. The weight vectors are 



initialized with the mean of the trajectories that belong to each 
class. Then the training data is presented sequentially to the 
network and the cluster centers for the specific class are updated. 
After this step, the test set is passed to the classifier and the class 
labels obtained are compared with the ground truth. The 
experiment is repeated with different numbers and combinations 
of word classes. Each classification experiment is averaged over 
100 runs to reduce any bias resulting from favourable word 
selection. The classification accuracies are reported in Table 2. 
Since ground truth is available for the ASL dataset, this 
experiment gives some indication of motion recognition rates 
achievable using our trajectory learning system. We achieved 
similar performance to a HMM-based recognition system 
described by Bashir [5] who reported a classification accuracy of 
91.2% over 3 word classes. However,  our approach is 
conceptually simpler and computationally less expensive. 

Table 2. Trajectory classification results for the Australian 
Sign Language (ASL) dataset. Trajectories are modeled in the 
DFT-coefficient feature space. 

# classes : 
 # trajectories 

% Accuracy 

2 : 54 95.7 
3 : 81 91.0 
4 : 108 89.9 
8 : 216 82.1 

16 : 432 76.3 
24 : 648 70.1 

6.4 Detecting anomalous trajectories 
In the final experiment, we test the performance of the anomaly 
detection component of our vision system for trajectory-based 
motion understanding. The dataset was obtained from tracking 
people moving around in our laboratory. The tracking algorithm 
used to collect the data is described elsewhere [31]. Human 
movements were planned so that object trajectories could be 
grouped into 4 distinct classes and hence ground truth was 
directly available. The motion trajectory dataset superimposed 
over the background scene is shown in Figure 12(a). 
The dataset also included some motion activities that varied 
deliberately from the planned movement patterns. This motion 
data was excluded from the training set. We randomly selected 
half the dataset for unsupervised learning and then presented the 
whole dataset together with the unusual trajectories as a test set. 
The clustering results are shown in Fig. 13. Visual inspection 
confirms that qualitatively similar motion trajectories have been 
grouped together as expected. This can be seen by observing the 
points marked by rectangles which indicate the trajectory initial 
points. Abnormal trajectories which are defined to be sufficiently 
distant from all the identified classes such that eq.(13) is satisfied 
for P < 0.01 are shown in Figure 12(b). All the trajectories that 
deliberately diverged from the 4 planned movement patterns were 
correctly identified as anomalous. 

 
(a) 

 
(b) 

Figure 12. (a) Laboratory background scene with object 
trajectories derived from motion tracking scheme [31]. (b) 
Trajectories identified as anomalous using Hotelling’s test 
with P < 0.01. 

 

   



Figure 13. Trajectory cluster patterns obtained using SOM 
clustering in the DFT coefficient feature space. 

7. Discussion and conclusions 
This paper presents a neural network learning algorithm for 
classifying spatiotemporal object trajectories. Global features of 
motion trajectories are found to be well-represented by DFT-
based Fourier series approximations and this is apparent in the 
cluster visualizations. Using the coefficients of basis functions as 
input feature vectors to a neural network learning algorithm offers 
an efficient alternative to the use of discrete point-based flow 
vectors for trajectory classification and anomaly detection. 
A possible drawback of this approach is for representation of 
highly complex trajectories resulting from partial trajectories 
stitched together over multiple camera views. These are 
inherently unsuited to a global function approximation. One 
possibility is to use a trajectory segmentation scheme or 
multiscale approach and augment the feature vector with 
additional entries relating to object shape or colour.  
A more comprehensive performance evaluation is now required 
using realistic crowded video sequences where occlusions and 
target misdetections will result in highly fragmented, partial and 
noisy trajectories. The robustness of the classification technique 
requires thorough investigation under these circumstances. We 
would also like to compare other dimensionality reduction and 
machine learning techniques for trajectory classification, e.g. 
ICA, HMMs and semi-supervised learning.  
This paper presents a novel vision system component for 
trajectory-based event detection. Trajectories are modeled as 
motion time series using DFT coefficients and activity patterns 
are then learnt in this reduced feature space using a SOM 
network. Improvements in recognition accuracy and learning 
efficiency are achieved when compared to point-based trajectory 
encoding and other clustering techniques. Assuming trajectories 
are distributed normally in the transformed coefficient feature 
space, a Mahalanobis classifier can be used to distinguish 
between normal and abnormal trajectory patterns. Our techniques 
have been validated using three different types of video tracking 
data. 
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